Skip to content

msk_cdm.databricks

DatabricksAPI

Bases: object

A class to interact with Databricks through its SQL API. This class allows connecting to a Databricks cluster, executing queries, and retrieving the results as pandas DataFrames.

Source code in msk_cdm/databricks/databricks_api.py
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
class DatabricksAPI(object):
    """A class to interact with Databricks through its SQL API. This class allows
    connecting to a Databricks cluster, executing queries, and retrieving
    the results as pandas DataFrames."""
    def __init__(
            self,
            client_id: Optional[str] = None,  # Client ID for Service Principal
            client_secret: Optional[str] = None,  # Client Secret for Service Principal
            token: Optional[str] = None,
            hostname: Optional[str] = None,
            http_path: Optional[str] = None,
            cluster_id: Optional[str] = None,
            fname_databricks_env: Optional[str] = None
    ) -> None:
        """Initializes the DatabricksAPI class with minimal changes for OAuth.


        Args:
            client_id: Client ID for Service Principal.
            client_secret: Client Secret for Service Principal.
            token: The access token for authentication with Databricks (default is None).
            hostname: The hostname of the Databricks server (default is None).
            http_path: The HTTP path for the Databricks SQL endpoint (default is None).
            fname_databricks_env: The file name of the environment file containing connection parameters (default is None).
        """
        self._client_id = client_id
        self._client_secret = client_secret
        self._TOKEN = token
        self._HOSTNAME = hostname
        self._HTTP_PATH = http_path
        self._CLUSTER_ID = cluster_id
        self._sql_client = None
        self._URL = None
        self._workspace_client = None

        if fname_databricks_env is not None:
            print('Parsing env file')
            self._process_env(fname_databricks_env=fname_databricks_env)

        if self._client_secret is not None:
            self._connect_with_oauth(
                client_id=self._client_id,
                client_secret=self._client_secret,
                hostname=self._HOSTNAME,
                http_path=self._HTTP_PATH
            )

        if self._TOKEN is not None:
            self._connect_with_token(
                token=self._TOKEN,
                hostname=self._HOSTNAME,
                http_path=self._HTTP_PATH
            )

        return None


    def _connect_with_oauth(
        self,
        client_id: str,
        client_secret: str,
        hostname: str,
        http_path: str
    ) -> None:
        """ Connect with Service Principle credentials.
        Establishes a connection to the Databricks cluster using OAuth authentication.

        Args:
            client_id: The client ID of the service principal for OAuth authentication.
            client_secret: The client secret of the service principal for OAuth authentication.
            hostname: The hostname of the Databricks server.
            http_path: The HTTP path for the Databricks SQL endpoint.

        Returns:
            None
        """
        print('Making databricks connection')

        def credential_provider():
            config = Config(
                host          = hostname,
                client_id     = client_id,
                client_secret = client_secret)
            return oauth_service_principal(config)

        connection = sql.connect(
            server_hostname=hostname,
            http_path=http_path,
            credentials_provider=credential_provider
        )

        workspace_client = WorkspaceClient(
            host=hostname,
            client_id=client_id,
            client_secret=client_secret
        )

        print('Connected.')

        self._sql_client = connection
        self._workspace_client = workspace_client

        return None

    def _connect_with_token(
            self,
            token: str,
            hostname: str,
            http_path: str
    ) -> None:
        """ Connection with personal token
        Establishes a connection to the Databricks cluster using the provided
        access token, hostname, and HTTP path.

        Args:
            token: The access token for authentication with Databricks.
            hostname: The hostname of the Databricks server.
            http_path: The HTTP path for the Databricks SQL endpoint.

        Returns:
            None
        """
        print('Making databricks connection')
        connection = sql.connect(
            server_hostname=hostname,
            http_path=http_path,
            access_token=token
        )

        workspace_client = WorkspaceClient(
            host=hostname,
            token=token
        )

        print('Connected.')

        self._sql_client = connection
        self._workspace_client = workspace_client

        return None

    def _process_env(
            self,
            fname_databricks_env: str
    ) -> None:
        """
        Processes the environment file to extract connection parameters such as
        the access token, hostname, HTTP path, and URL.

        Args:
            fname_databricks_env: The file name of the environment file containing connection parameters.

        Returns:
            None
        """

        dict_config = dotenv_values(fname_databricks_env)

        if not self._client_id:
            self._client_id = dict_config.get("CLIENT_ID", None)  # Retrieve client_id from the environment
        if not self._client_secret:
            self._client_secret = dict_config.get("CLIENT_SECRET", None)  # Retrieve client_secret from the environment
        if not self._TOKEN:
            self._TOKEN = dict_config.get("TOKEN", None)
        if not self._HOSTNAME:
            self._HOSTNAME = dict_config.get("HOSTNAME", None)
        if not self._URL:
            self._URL = dict_config.get("URL", None)
        if not self._HTTP_PATH:
            self._HTTP_PATH = dict_config.get("HTTP_PATH", None)
        if not self._CLUSTER_ID:
            self._CLUSTER_ID = dict_config.get("DATABRICKS_CLUSTER_ID", None)

        return None

    def query_from_file(
            self,
            *,
            fname_sql: str
    ) -> pd.DataFrame:
        """Query Databricks from a SQL file
        Executes a Spark SQL query from a file and returns the result as a pandas
        DataFrame.

        Args:
            fname_sql: The file name of the SQL file containing the query.

        Returns:
            df: A DataFrame containing the results of the query.
        """
        # open SQL file
        fd = open(fname_sql, 'r')
        sqlFile = fd.read()
        fd.close()

        print('Preview of SQL in %s:' % fname_sql)
        print(sqlFile[:50])

        df = self.query_from_sql(sql=sqlFile)

        return df

    def query_from_sql(
            self,
            *,
            sql: str
    ) -> pd.DataFrame:
        """Query Databricks from a SQL string
        Executes a Spark SQL query from a string and returns the result as a pandas
        DataFrame.

        Args:
            sql: The Spark SQL query string to be executed.

        Returns:
            df: A DataFrame containing the results of the query.
        """

        cursor = self._sql_client.cursor()
        for i,query in enumerate(sql.split(';')):
            cursor.execute(query)

        ### Another way to do the query above is through SQLalchemy
        # engine = create_engine(
        #     url = f"databricks://token:{token}@{hostname}?" +
        #           f"http_path={http_path}&catalog={catalog}&schema={schema}"
        # )
        #
        # with engine.connect() as conn:
        #     # This will read the contents of `main.test.some_table`
        #     df_sql = pd.read_sql(f"SELECT *, _metadata FROM {catalog}.{schema}.{table}", conn)


        # Gather column names from query
        column_names = [desc[0] for desc in cursor.description]
        data = cursor.fetchall()

        # Convert to pandas dataframe
        df = pd.DataFrame(
            data,
            columns=column_names
        )

        return df

    def read_db_obj(
            self,
            volume_path: str,
            sep: Optional[str] ='\t'
    ) -> pd.DataFrame:
        """Read object from Databricks volume
        Reads a CSV/TSV file from the Databricks volume and converts it into a
        pandas DataFrame.

        Args:
            volume_path: The path to the file on the Databricks volume.
            sep: The separator used in the file.

        Returns:
            df: A DataFrame containing the data from the file.
        """
        # Read csv/tsv file from volume and convert into Pandas dataframe
        response = self._workspace_client.files.download(volume_path)
        data_str = BytesIO(response.contents.read())
        df = pd.read_csv(data_str, sep=sep)

        return df

    def create_directory_on_volume(
            self,
            path: str
    ) -> None:
        """
        Creates a directory on the Databricks volume at the specified path.

        Args:
            path: The path where the directory should be created.

        Returns:
            None
        """
        # Create a directory for file to be uploaded
        print('Creating directory on volume: %s' % path)
        self._workspace_client.files.create_directory(path)

        print('Created')

    def write_db_obj(
            self,
            df: pd.DataFrame,
            volume_path: str,
            sep: Optional[str] = '\t',
            overwrite: Optional[bool] = True,
            dict_database_table_info: Optional[dict] = None
    ):
        """Write data to Databricks volume
        Writes a pandas DataFrame to a CSV file on the Databricks volume. Optionally,
        creates a table in Databricks from the CSV file.

        Args:
            df: The DataFrame to be written to the file.
            volume_path: The path where the file should be saved on the Databricks volume.
            sep: The separator used in the file.
            overwrite: Whether to overwrite the existing file.
            dict_database_table_info: A dictionary containing information about the
                                      database table. If `dict_database_table_info` is used, it must contain these keys

                                        - catalog: Databricks catalog used
                                        - schema: Schema within the catalog
                                        - table: Table in the schema that will contain the dataframe information
                                        - volume_path: Path location on the volume of the object. A csv file for use of this
                                        - sep: File separator used for the object. Typically, comma or tab separated

        Returns:
            None


        """
        # Create directory on volume for data to be uploaded. If directory, exists, nothing will happen to existing data
        dir_volume_path = os.path.dirname(volume_path)
        self.create_directory_on_volume(path=dir_volume_path)

        csv_bytes = df.to_csv(index=False, sep=sep).encode("utf-8")
        csv_buffer = BytesIO(csv_bytes)

        print('Writing to %s' % volume_path)
        self._workspace_client.files.upload(
            volume_path,
            csv_buffer,
            overwrite=overwrite
        )
        print('Write to volume complete')

        if dict_database_table_info is not None:
            if sep != dict_database_table_info.get('sep'):
                dict_database_table_info['sep'] = sep
                print("Conflict with separator in dict; setting to value object was saved as.")

            self.create_table_from_volume(dict_database_table_info=dict_database_table_info)

        return None

    def _sql_write_creator(
            self,
            catalog: str,
            schema: str,
            table: str,
            volume_path: str,
            sep: Optional[str] = '\t'
    ) -> str:
        """
        Generates a SQL query string to create a table in Databricks from a file
        located on the Databricks volume.

        Args:
            catalog: The catalog in which the table will be created.
            schema: The schema within the catalog.
            table: The name of the table to be created.
            volume_path: The path to the file on the Databricks volume.
            sep: The separator used in the file.

        Returns:
            sql_write: A SQL query string to create the table.
        """
        sql_write = f"""
        DROP TABLE IF EXISTS {catalog}.{schema}.{table};
        CREATE TABLE IF NOT EXISTS {catalog}.{schema}.{table};

        COPY INTO {catalog}.{schema}.{table} FROM '{volume_path}'
        FILEFORMAT = CSV 
        FORMAT_OPTIONS ('delimiter' = '{sep}', 'header' = 'true') 
        COPY_OPTIONS ('mergeSchema' = 'true');

        """

        return sql_write

    def create_table_from_volume(
            self,
            dict_database_table_info: dict
    ) -> None:
        """
        Creates a SQL table in Databricks from a file located on the Databricks volume.

        Args:
            dict_database_table_info: A dictionary containing information about the
                                      database table. If `dict_database_table_info` is used, it must contain these keys

                                        - catalog: Databricks catalog used
                                        - schema: Schema within the catalog
                                        - table: Table in the schema that will contain the dataframe information
                                        - volume_path: Path location on the volume of the object. A csv file for use of this
                                        - sep: File separator used for the object. Typically, comma or tab separated

        Returns:
            None
        """
        catalog = dict_database_table_info.get('catalog')
        schema = dict_database_table_info.get('schema')
        table = dict_database_table_info.get('table')
        volume_path = dict_database_table_info.get('volume_path')
        sep_of_volume_obj = dict_database_table_info.get('sep')
        print('Creating SQL table from volume:')
        print('Catalog: %s' % catalog)
        print('Schema: %s' % schema)
        print('Table: %s' % table)
        print('Volume path: %s' % volume_path)
        print('Separator: %s' % sep_of_volume_obj)

        sql_write = self._sql_write_creator(
            catalog=catalog,
            schema=schema,
            table=table,
            volume_path=volume_path,
            sep=sep_of_volume_obj
        )

        cursor = self._sql_client.cursor()
        for i,query in enumerate(sql_write.split(';')[:-1]):
            print(query)
            cursor.execute(query)

        print('Table created')

        return None


    def close_connection(self):
        """
        Closes the connection to the Databricks cluster.

        Returns:
            None
        """
        cursor = self._sql_client.cursor()
        cursor.close()
        self._sql_client.close()
        print('Databricks connection closed')

        return None

    def init_spark_session(
            self
    ) -> Any:
        """
        Initializes a Databricks Spark session using environment configuration.

        This function sets necessary environment variables for Databricks Connect and
        creates a Spark session using DatabricksSession.builder.getOrCreate().

        Args:
            env (dict): Environment variables dictionary containing URL, TOKEN, and DATABRICKS_CLUSTER_ID.

        Returns:
            SparkSession: A Spark session connected to the specified Databricks cluster.
        """
        import os
        os.environ["DATABRICKS_HOST"] = self._URL
        os.environ["DATABRICKS_TOKEN"] = self._TOKEN
        os.environ["DATABRICKS_CLUSTER_ID"] = self._CLUSTER_ID
        return DatabricksSession.builder.getOrCreate()

    def load_csv_from_volume(
            self,
            spark: Any,
            fname_idb: str
    ) -> Any:
        """
        Loads a CSV file from a Databricks volume into a Spark DataFrame.

        Args:
            spark (SparkSession): An active Spark session.
            fname_idb (str): Path to the CSV file in the volume.

        Returns:
            DataFrame: A Spark DataFrame containing the CSV contents.
        """
        return spark.read.format("csv").load(
            fname_idb,
            sep="\t",
            header=True,
            escape='"',
            multiLine=True
        )

    def load_table(
            self,
            spark: Any,
            table_name: str
    ) -> Any:
        """
        Loads a Delta table into a Spark DataFrame.

        Args:
            spark (SparkSession): An active Spark session.
            table_name (str): Fully qualified name of the Delta table.

        Returns:
            DataFrame: A Spark DataFrame with the table contents.
        """
        return spark.read.format("delta").table(table_name)

__init__(client_id=None, client_secret=None, token=None, hostname=None, http_path=None, cluster_id=None, fname_databricks_env=None)

Initializes the DatabricksAPI class with minimal changes for OAuth.

Parameters:

Name Type Description Default
client_id Optional[str]

Client ID for Service Principal.

None
client_secret Optional[str]

Client Secret for Service Principal.

None
token Optional[str]

The access token for authentication with Databricks (default is None).

None
hostname Optional[str]

The hostname of the Databricks server (default is None).

None
http_path Optional[str]

The HTTP path for the Databricks SQL endpoint (default is None).

None
fname_databricks_env Optional[str]

The file name of the environment file containing connection parameters (default is None).

None
Source code in msk_cdm/databricks/databricks_api.py
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
def __init__(
        self,
        client_id: Optional[str] = None,  # Client ID for Service Principal
        client_secret: Optional[str] = None,  # Client Secret for Service Principal
        token: Optional[str] = None,
        hostname: Optional[str] = None,
        http_path: Optional[str] = None,
        cluster_id: Optional[str] = None,
        fname_databricks_env: Optional[str] = None
) -> None:
    """Initializes the DatabricksAPI class with minimal changes for OAuth.


    Args:
        client_id: Client ID for Service Principal.
        client_secret: Client Secret for Service Principal.
        token: The access token for authentication with Databricks (default is None).
        hostname: The hostname of the Databricks server (default is None).
        http_path: The HTTP path for the Databricks SQL endpoint (default is None).
        fname_databricks_env: The file name of the environment file containing connection parameters (default is None).
    """
    self._client_id = client_id
    self._client_secret = client_secret
    self._TOKEN = token
    self._HOSTNAME = hostname
    self._HTTP_PATH = http_path
    self._CLUSTER_ID = cluster_id
    self._sql_client = None
    self._URL = None
    self._workspace_client = None

    if fname_databricks_env is not None:
        print('Parsing env file')
        self._process_env(fname_databricks_env=fname_databricks_env)

    if self._client_secret is not None:
        self._connect_with_oauth(
            client_id=self._client_id,
            client_secret=self._client_secret,
            hostname=self._HOSTNAME,
            http_path=self._HTTP_PATH
        )

    if self._TOKEN is not None:
        self._connect_with_token(
            token=self._TOKEN,
            hostname=self._HOSTNAME,
            http_path=self._HTTP_PATH
        )

    return None

close_connection()

Closes the connection to the Databricks cluster.

Returns:

Type Description

None

Source code in msk_cdm/databricks/databricks_api.py
461
462
463
464
465
466
467
468
469
470
471
472
473
def close_connection(self):
    """
    Closes the connection to the Databricks cluster.

    Returns:
        None
    """
    cursor = self._sql_client.cursor()
    cursor.close()
    self._sql_client.close()
    print('Databricks connection closed')

    return None

create_directory_on_volume(path)

Creates a directory on the Databricks volume at the specified path.

Parameters:

Name Type Description Default
path str

The path where the directory should be created.

required

Returns:

Type Description
None

None

Source code in msk_cdm/databricks/databricks_api.py
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
def create_directory_on_volume(
        self,
        path: str
) -> None:
    """
    Creates a directory on the Databricks volume at the specified path.

    Args:
        path: The path where the directory should be created.

    Returns:
        None
    """
    # Create a directory for file to be uploaded
    print('Creating directory on volume: %s' % path)
    self._workspace_client.files.create_directory(path)

    print('Created')

create_table_from_volume(dict_database_table_info)

Creates a SQL table in Databricks from a file located on the Databricks volume.

Parameters:

Name Type Description Default
dict_database_table_info dict

A dictionary containing information about the database table. If dict_database_table_info is used, it must contain these keys

                    - catalog: Databricks catalog used
                    - schema: Schema within the catalog
                    - table: Table in the schema that will contain the dataframe information
                    - volume_path: Path location on the volume of the object. A csv file for use of this
                    - sep: File separator used for the object. Typically, comma or tab separated
required

Returns:

Type Description
None

None

Source code in msk_cdm/databricks/databricks_api.py
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
def create_table_from_volume(
        self,
        dict_database_table_info: dict
) -> None:
    """
    Creates a SQL table in Databricks from a file located on the Databricks volume.

    Args:
        dict_database_table_info: A dictionary containing information about the
                                  database table. If `dict_database_table_info` is used, it must contain these keys

                                    - catalog: Databricks catalog used
                                    - schema: Schema within the catalog
                                    - table: Table in the schema that will contain the dataframe information
                                    - volume_path: Path location on the volume of the object. A csv file for use of this
                                    - sep: File separator used for the object. Typically, comma or tab separated

    Returns:
        None
    """
    catalog = dict_database_table_info.get('catalog')
    schema = dict_database_table_info.get('schema')
    table = dict_database_table_info.get('table')
    volume_path = dict_database_table_info.get('volume_path')
    sep_of_volume_obj = dict_database_table_info.get('sep')
    print('Creating SQL table from volume:')
    print('Catalog: %s' % catalog)
    print('Schema: %s' % schema)
    print('Table: %s' % table)
    print('Volume path: %s' % volume_path)
    print('Separator: %s' % sep_of_volume_obj)

    sql_write = self._sql_write_creator(
        catalog=catalog,
        schema=schema,
        table=table,
        volume_path=volume_path,
        sep=sep_of_volume_obj
    )

    cursor = self._sql_client.cursor()
    for i,query in enumerate(sql_write.split(';')[:-1]):
        print(query)
        cursor.execute(query)

    print('Table created')

    return None

init_spark_session()

Initializes a Databricks Spark session using environment configuration.

This function sets necessary environment variables for Databricks Connect and creates a Spark session using DatabricksSession.builder.getOrCreate().

Parameters:

Name Type Description Default
env dict

Environment variables dictionary containing URL, TOKEN, and DATABRICKS_CLUSTER_ID.

required

Returns:

Name Type Description
SparkSession Any

A Spark session connected to the specified Databricks cluster.

Source code in msk_cdm/databricks/databricks_api.py
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
def init_spark_session(
        self
) -> Any:
    """
    Initializes a Databricks Spark session using environment configuration.

    This function sets necessary environment variables for Databricks Connect and
    creates a Spark session using DatabricksSession.builder.getOrCreate().

    Args:
        env (dict): Environment variables dictionary containing URL, TOKEN, and DATABRICKS_CLUSTER_ID.

    Returns:
        SparkSession: A Spark session connected to the specified Databricks cluster.
    """
    import os
    os.environ["DATABRICKS_HOST"] = self._URL
    os.environ["DATABRICKS_TOKEN"] = self._TOKEN
    os.environ["DATABRICKS_CLUSTER_ID"] = self._CLUSTER_ID
    return DatabricksSession.builder.getOrCreate()

load_csv_from_volume(spark, fname_idb)

Loads a CSV file from a Databricks volume into a Spark DataFrame.

Parameters:

Name Type Description Default
spark SparkSession

An active Spark session.

required
fname_idb str

Path to the CSV file in the volume.

required

Returns:

Name Type Description
DataFrame Any

A Spark DataFrame containing the CSV contents.

Source code in msk_cdm/databricks/databricks_api.py
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
def load_csv_from_volume(
        self,
        spark: Any,
        fname_idb: str
) -> Any:
    """
    Loads a CSV file from a Databricks volume into a Spark DataFrame.

    Args:
        spark (SparkSession): An active Spark session.
        fname_idb (str): Path to the CSV file in the volume.

    Returns:
        DataFrame: A Spark DataFrame containing the CSV contents.
    """
    return spark.read.format("csv").load(
        fname_idb,
        sep="\t",
        header=True,
        escape='"',
        multiLine=True
    )

load_table(spark, table_name)

Loads a Delta table into a Spark DataFrame.

Parameters:

Name Type Description Default
spark SparkSession

An active Spark session.

required
table_name str

Fully qualified name of the Delta table.

required

Returns:

Name Type Description
DataFrame Any

A Spark DataFrame with the table contents.

Source code in msk_cdm/databricks/databricks_api.py
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
def load_table(
        self,
        spark: Any,
        table_name: str
) -> Any:
    """
    Loads a Delta table into a Spark DataFrame.

    Args:
        spark (SparkSession): An active Spark session.
        table_name (str): Fully qualified name of the Delta table.

    Returns:
        DataFrame: A Spark DataFrame with the table contents.
    """
    return spark.read.format("delta").table(table_name)

query_from_file(*, fname_sql)

Query Databricks from a SQL file Executes a Spark SQL query from a file and returns the result as a pandas DataFrame.

Parameters:

Name Type Description Default
fname_sql str

The file name of the SQL file containing the query.

required

Returns:

Name Type Description
df DataFrame

A DataFrame containing the results of the query.

Source code in msk_cdm/databricks/databricks_api.py
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
def query_from_file(
        self,
        *,
        fname_sql: str
) -> pd.DataFrame:
    """Query Databricks from a SQL file
    Executes a Spark SQL query from a file and returns the result as a pandas
    DataFrame.

    Args:
        fname_sql: The file name of the SQL file containing the query.

    Returns:
        df: A DataFrame containing the results of the query.
    """
    # open SQL file
    fd = open(fname_sql, 'r')
    sqlFile = fd.read()
    fd.close()

    print('Preview of SQL in %s:' % fname_sql)
    print(sqlFile[:50])

    df = self.query_from_sql(sql=sqlFile)

    return df

query_from_sql(*, sql)

Query Databricks from a SQL string Executes a Spark SQL query from a string and returns the result as a pandas DataFrame.

Parameters:

Name Type Description Default
sql str

The Spark SQL query string to be executed.

required

Returns:

Name Type Description
df DataFrame

A DataFrame containing the results of the query.

Source code in msk_cdm/databricks/databricks_api.py
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
def query_from_sql(
        self,
        *,
        sql: str
) -> pd.DataFrame:
    """Query Databricks from a SQL string
    Executes a Spark SQL query from a string and returns the result as a pandas
    DataFrame.

    Args:
        sql: The Spark SQL query string to be executed.

    Returns:
        df: A DataFrame containing the results of the query.
    """

    cursor = self._sql_client.cursor()
    for i,query in enumerate(sql.split(';')):
        cursor.execute(query)

    ### Another way to do the query above is through SQLalchemy
    # engine = create_engine(
    #     url = f"databricks://token:{token}@{hostname}?" +
    #           f"http_path={http_path}&catalog={catalog}&schema={schema}"
    # )
    #
    # with engine.connect() as conn:
    #     # This will read the contents of `main.test.some_table`
    #     df_sql = pd.read_sql(f"SELECT *, _metadata FROM {catalog}.{schema}.{table}", conn)


    # Gather column names from query
    column_names = [desc[0] for desc in cursor.description]
    data = cursor.fetchall()

    # Convert to pandas dataframe
    df = pd.DataFrame(
        data,
        columns=column_names
    )

    return df

read_db_obj(volume_path, sep='\t')

Read object from Databricks volume Reads a CSV/TSV file from the Databricks volume and converts it into a pandas DataFrame.

Parameters:

Name Type Description Default
volume_path str

The path to the file on the Databricks volume.

required
sep Optional[str]

The separator used in the file.

'\t'

Returns:

Name Type Description
df DataFrame

A DataFrame containing the data from the file.

Source code in msk_cdm/databricks/databricks_api.py
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
def read_db_obj(
        self,
        volume_path: str,
        sep: Optional[str] ='\t'
) -> pd.DataFrame:
    """Read object from Databricks volume
    Reads a CSV/TSV file from the Databricks volume and converts it into a
    pandas DataFrame.

    Args:
        volume_path: The path to the file on the Databricks volume.
        sep: The separator used in the file.

    Returns:
        df: A DataFrame containing the data from the file.
    """
    # Read csv/tsv file from volume and convert into Pandas dataframe
    response = self._workspace_client.files.download(volume_path)
    data_str = BytesIO(response.contents.read())
    df = pd.read_csv(data_str, sep=sep)

    return df

write_db_obj(df, volume_path, sep='\t', overwrite=True, dict_database_table_info=None)

Write data to Databricks volume Writes a pandas DataFrame to a CSV file on the Databricks volume. Optionally, creates a table in Databricks from the CSV file.

Parameters:

Name Type Description Default
df DataFrame

The DataFrame to be written to the file.

required
volume_path str

The path where the file should be saved on the Databricks volume.

required
sep Optional[str]

The separator used in the file.

'\t'
overwrite Optional[bool]

Whether to overwrite the existing file.

True
dict_database_table_info Optional[dict]

A dictionary containing information about the database table. If dict_database_table_info is used, it must contain these keys

                    - catalog: Databricks catalog used
                    - schema: Schema within the catalog
                    - table: Table in the schema that will contain the dataframe information
                    - volume_path: Path location on the volume of the object. A csv file for use of this
                    - sep: File separator used for the object. Typically, comma or tab separated
None

Returns:

Type Description

None

Source code in msk_cdm/databricks/databricks_api.py
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
def write_db_obj(
        self,
        df: pd.DataFrame,
        volume_path: str,
        sep: Optional[str] = '\t',
        overwrite: Optional[bool] = True,
        dict_database_table_info: Optional[dict] = None
):
    """Write data to Databricks volume
    Writes a pandas DataFrame to a CSV file on the Databricks volume. Optionally,
    creates a table in Databricks from the CSV file.

    Args:
        df: The DataFrame to be written to the file.
        volume_path: The path where the file should be saved on the Databricks volume.
        sep: The separator used in the file.
        overwrite: Whether to overwrite the existing file.
        dict_database_table_info: A dictionary containing information about the
                                  database table. If `dict_database_table_info` is used, it must contain these keys

                                    - catalog: Databricks catalog used
                                    - schema: Schema within the catalog
                                    - table: Table in the schema that will contain the dataframe information
                                    - volume_path: Path location on the volume of the object. A csv file for use of this
                                    - sep: File separator used for the object. Typically, comma or tab separated

    Returns:
        None


    """
    # Create directory on volume for data to be uploaded. If directory, exists, nothing will happen to existing data
    dir_volume_path = os.path.dirname(volume_path)
    self.create_directory_on_volume(path=dir_volume_path)

    csv_bytes = df.to_csv(index=False, sep=sep).encode("utf-8")
    csv_buffer = BytesIO(csv_bytes)

    print('Writing to %s' % volume_path)
    self._workspace_client.files.upload(
        volume_path,
        csv_buffer,
        overwrite=overwrite
    )
    print('Write to volume complete')

    if dict_database_table_info is not None:
        if sep != dict_database_table_info.get('sep'):
            dict_database_table_info['sep'] = sep
            print("Conflict with separator in dict; setting to value object was saved as.")

        self.create_table_from_volume(dict_database_table_info=dict_database_table_info)

    return None